Capillary rheometry simulates polymer extrusion in a simplified way. It allows the characterisation of polymers by means of determination of the viscosity function and extrude swell. As regards viscous properties, there is still a lack of constitutive characterisation of rubber blends. On this paper a new concept is presented how the viscous properties are computed without using common correction methods [1].

The so-called die swell is the determining criterion for the production of rubber profiles by means of extrusion. Therefore its experimental investigations and numerical modelling is of high interest for the identification of high performance rubber blends. The comparison of the die swell for the production of rubber profiles is necessary. Thus, the final goal of this project is the numerical prognosis concerning tools for the extrusion of rubber.

Literature:

Overview

Constitutive Characterisation by means of a Power Law

For the description of the pseudo-plastic material behaviour of rubber blends the power law by Ostwald and de Waele in [1] is used. Its application to the investigated rubber blends is possible for a common interval of the shear strain rate $\dot{\gamma}$. The shear strain rate is in high gear. Because $\dot{\gamma} < 1$ non-linear coupling between the viscosity and shear rate is in high gear.

The comparison of the obtained viscosity curves leads to a good conformity. The non-linear coupling between the viscosity and the shear rate is in high gear. Because $\dot{\gamma} < 1$, rubber has a pseudo-plastic behaviour.

Experimental Investigations

In order to determine the viscosity of rubber experiments with a capillary-viscometer are required. With a certain stamp velocity v the melt pressure p_m is obtained. Up to 100 experiments for each rubber blend with different capillary lengths l, capillary radii r and melt temperatures T_m were performed. They allow the development of a new material characterisation method.

The strand diameter after the exit of the capillary-viscometer was investigated by means of a high-speed camera, because the highest exit speed of the strand is about 1000 mm/s.

Alternative to the high-speed camera the strand diameter has been investigated by means of a laser beam with the so-called swell value measuring unit. The diameter of the investigated rubber blends increases after the capillary entry up to 16 % of the capillary diameter D.

With the measured swell values various statements of the elastic behaviour of the investigated rubber blends are possible. From the rheological point of view the die swell occurs as a result of the recovery of the elastic deformation imposed in the capillary. The swelling of the strand after the exit from a capillary is typical for non-Newtonian viscoelastic materials like rubber.